
HDL Verifier™
Getting Started Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

HDL Verifier™ Getting Started Guide
© COPYRIGHT 2003–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
August 2003 Online only New for Version 1 (Release 13SP1)
February 2004 Online only Revised for Version 1.1 (Release 13SP1)
June 2004 Online only Revised for Version 1.1.1 (Release 14)
October 2004 Online only Revised for Version 1.2 (Release 14SP1)
December 2004 Online only Revised for Version 1.3 (Release 14SP1+)
March 2005 Online only Revised for Version 1.3.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.4 (Release 14SP3)
March 2006 Online only Revised for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 2.2 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.4 (Release 2008a)
October 2008 Online only Revised for Version 2.5 (Release 2008b)
March 2009 Online only Revised for Version 2.6 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.2 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 3.4 (Release 2011b)
March 2012 Online only Revised for Version 4.0 (Release 2012a)
September 2012 Online only Revised for Version 4.1 (Release 2012b)
March 2013 Online only Revised for Version 4.2 (Release 2013a)
September 2013 Online only Revised for Version 4.3 (Release 2013b)
March 2014 Online only Revised for Version 4.4 (Release 2014a)
October 2014 Online only Revised for Version 4.5 (Release 2014b)
March 2015 Online only Revised for Version 4.6 (Release 2015a)
September 2015 Online only Revised for Version 4.7 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 5.6 (Release 2019a)
September 2019 Online only Revised for Version 6.0 (Release 2019b)
March 2020 Online only Revised for Version 6.1 (Release 2020a)
September 2020 Online only Revised for Version 6.2 (Release 2020b)
March 2021 Online only Revised for Version 6.3 (Release 2021a)
September 2021 Online only Revised for Version 6.4 (Release 2021b)
March 2022 Online only Revised for Version 6.5 (Release 2022a)
September 2022 Online only Revised for Version 7.0 (Release 2022b)
March 2023 Online only Revised for Version 7.1 (Release 2023a)

Introduction
1

HDL Verifier Product Description . 1-2

About HDL Verifier
2

HDL Cosimulation . 2-2
HDL Cosimulation with MATLAB or Simulink . 2-2
Communications for HDL Cosimulation . 2-5
Hardware Description Language (HDL) Support . 2-5
HDL Cosimulation Workflows . 2-5
Product Features and Platform Support . 2-6

FPGA Verification . 2-7
FPGA Verification with HDL Verifier and HDL Coder 2-7
Product Features and Platform Support . 2-7

TLM Component Generation . 2-9
Generating TLM Components for Virtual Platform Development 2-9
Typical Users and Applications . 2-10
Product Feature and Platform Support . 2-10

SystemVerilog DPI Component Generation . 2-11
Export Simulink Subsystem or MATLAB Function Using DPI Interface . . 2-11
Generate SystemVerilog DPI Test Bench in HDL Coder 2-11

Third-Party Product Requirements
3

Supported EDA Tools and Hardware . 3-2
Cosimulation Requirements . 3-2
FPGA Verification Requirements . 3-3
UVM and DPI Component Generation Requirements 3-12
TLM Generation Requirements . 3-13
Troubleshooting . 3-13

v

Contents

Introduction

1

HDL Verifier Product Description
Test and verify Verilog and VHDL using HDL simulators and FPGA boards

HDL Verifier lets you test and verify VHDL® and Verilog® designs for FPGAs, ASICs, and SoCs. You
can verify RTL with testbenches running in MATLAB® or Simulink® using cosimulation with Siemens®

Questa® or ModelSim®, Cadence® Xcelium™, and the Xilinx® Vivado® simulator. You can reuse these
same testbenches with FPGA development boards to verify hardware implementations.

HDL Verifier generates SystemVerilog verification models for RTL testbenches and complete
Universal Verification Methodology (UVM) environments. These models run natively in the Questa,
Xcelium, and Vivado simulators, as well as Synopsys® VCS via the SystemVerilog Direct Programming
Interface (DPI).

HDL Verifier provides tools for debugging and testing implementations on Xilinx, Intel®, and
Microchip boards from MATLAB. You can insert probes into designs and set trigger conditions to
upload internal signals into MATLAB for visualization and analysis.

1 Introduction

1-2

About HDL Verifier

• “HDL Cosimulation” on page 2-2
• “FPGA Verification” on page 2-7
• “TLM Component Generation” on page 2-9
• “SystemVerilog DPI Component Generation” on page 2-11

2

HDL Cosimulation
In this section...
“HDL Cosimulation with MATLAB or Simulink” on page 2-2
“Communications for HDL Cosimulation” on page 2-5
“Hardware Description Language (HDL) Support” on page 2-5
“HDL Cosimulation Workflows” on page 2-5
“Product Features and Platform Support” on page 2-6

HDL Cosimulation with MATLAB or Simulink
The HDL Verifier software consists of MATLAB functions, a MATLAB System object™, and a library of
Simulink blocks, all of which establish communication links between the HDL simulator and MATLAB
or Simulink.

HDL Verifier software streamlines FPGA and ASIC development by integrating tools available for the
following processes:

1 Developing specifications for hardware design reference models
2 Implementing a hardware design in HDL based on a reference model
3 Verifying the design against the reference design

The following figure shows how the HDL simulator and MathWorks® products fit into this hardware
design scenario.

As the figure shows, HDL Verifier software connects tools that traditionally have been used discretely
to perform specific steps in the design process. By connecting these tools, the link simplifies
verification by allowing you to cosimulate the implementation and original specification directly. This
cosimulation results in significant time savings and the elimination of errors inherent to manual
comparison and inspection.

In addition to the preceding design scenario, HDL Verifier software enables you to work with tools in
the following ways:

• Use MATLAB or Simulink to create test signals and software test benches for HDL code
• Use MATLAB or Simulink to provide a behavioral model for an HDL simulation

2 About HDL Verifier

2-2

• Use MATLAB analysis and visualization capabilities for real-time insight into an HDL
implementation

• Use Simulink to translate legacy HDL descriptions into system-level views

Note You can cosimulate a module using SystemVerilog, SystemC or both with MATLAB or Simulink
using the HDL Verifier software. Write simple wrappers around the SystemC and make sure that the
SystemVerilog cosimulation connections are to ports or signals of data types supported by the link
cosimulation interface.

More discussion on how cosimulation works can be found in the following sections:

• “Linking with MATLAB and the HDL Simulator” on page 2-3
• “Linking with Simulink and the HDL Simulator” on page 2-4
• “The HDL Cosimulation Wizard” on page 2-5

Linking with MATLAB and the HDL Simulator

When linked with MATLAB, the HDL simulator functions as the client, as the following figure shows.

In this scenario, a MATLAB server function waits for service requests that it receives from an HDL
simulator session. After receiving a request, the server establishes a communication link and invokes
a specified MATLAB function that computes data for, verifies, or visualizes the HDL module (coded in
VHDL or Verilog) that is under simulation in the HDL simulator.

After the server is running, you can start and configure the HDL simulator or use with MATLAB with
the supplied HDL Verifier function:

• nclaunch (Xcelium)
• vsim (ModelSim)

The following figure shows how a MATLAB test bench function wraps around and communicates with
the HDL simulator during a test bench simulation session.

 HDL Cosimulation

2-3

The following figure shows how a MATLAB component function is wrapped around by and
communicates with the HDL simulator during a component simulation session.

When you begin a specific test bench or component session, you specify parameters that identify the
following information:

• The mode and, if applicable, TCP/IP data for connecting to a MATLAB server
• The MATLAB function that is associated with and executes on behalf of the HDL instance
• Timing specifications and other control data that specifies when the module's MATLAB function is

to be called

Linking with Simulink and the HDL Simulator

When linked with Simulink, the HDL simulator functions as the server, as shown in the following
figure.

In this case, the HDL simulator responds to simulation requests it receives from cosimulation blocks
in a Simulink model. You begin a cosimulation session from Simulink. After a session is started, you
can use Simulink and the HDL simulator to monitor simulation progress and results. For example, you
might add signals to an HDL simulator Wave window to monitor simulation timing diagrams.

Using the Block Parameters dialog box for an HDL Cosimulation block, you can configure the
following:

• Block input and output ports that correspond to signals (including internal signals) of an HDL
module. You can specify sample times and fixed-point data types for individual block output ports
if desired.

• Type of communication and communication settings used for exchanging data between the
simulation tools.

• Rising-edge or falling-edge clocks to apply to your module. You can individually specify the period
of each clock.

• Tcl commands to run before and after the simulation.

HDL Verifier software equips the HDL simulator with a set of customized functions. For ModelSim,
when you use the function vsimulink, you execute the HDL simulator with an instance of an HDL
module for cosimulation with Simulink. After the module is loaded, you can start the cosimulation

2 About HDL Verifier

2-4

session from Simulink. Xcelium users can perform the same operations with the function
hdlsimulink.

HDL Verifier software also includes a block for generating value change dump (VCD) files. You can
use VCD files generated with this block to perform the following tasks:

• View Simulink simulation waveforms in your HDL simulation environment
• Compare results of multiple simulation runs, using the same or different simulation environments
• Use as input to post-simulation analysis tools

The HDL Cosimulation Wizard

HDL Verifier contains the Cosimulation Wizard feature, which uses existing HDL code to create a
customized MATLAB function (test bench or component), MATLAB System object, or Simulink HDL
Cosimulation block. For more information, see “Prepare to Import HDL Code for Cosimulation”.

Communications for HDL Cosimulation
The mode of communication that you use for a link between the HDL simulator and MATLAB or
Simulink depends on whether your application runs in a local, single-system configuration or in a
network configuration. If these products and MathWorks products can run locally on the same system
and your application requires only one communication channel, you have the option of choosing
between shared memory and TCP/IP socket communication. Shared memory communication provides
optimal performance and is the default mode of communication.

TCP/IP socket mode is more versatile. You can use it for single-system and network configurations.
This option offers the greatest scalability. For more on TCP/IP socket communication, see “TCP/IP
Socket Ports”.

Hardware Description Language (HDL) Support
All HDL Verifier MATLAB functions and the HDL Cosimulation block offer the same language-
transparent feature set for both Verilog and VHDL models.

HDL Verifier software also supports mixed-language HDL models (models with both Verilog and
VHDL components), allowing you to cosimulate VHDL and Verilog signals simultaneously. Both
MATLAB and Simulink software can access components in different languages at any level.

HDL Cosimulation Workflows
The HDL Verifier User Guide provides instruction for using the verification software with supported
HDL simulators for the following workflows:

• Simulating an HDL Component in a MATLAB Test Bench Environment
• Replacing an HDL Component with a MATLAB Component Function
• Simulating an HDL Component in a Simulink Test Bench Environment
• Replacing an HDL Component with a Simulink Algorithm
• Recording Simulink Signal State Transitions for Post-Processing

 HDL Cosimulation

2-5

Product Features and Platform Support
Product Feature Required Products Recommended

Products
Supported Platforms

MATLAB and HDL
simulator cosimulation
(function)

MATLAB Fixed-Point Designer™,
Signal Processing
Toolbox™

Windows® 32- and 64-
bit; Linux® 64-bit

MATLAB and HDL
simulator cosimulation
(System object)

MATLAB and Fixed-
Point Designer

Communications
Toolbox™, DSP System
Toolbox™

Windows 32- and 64-bit;
Linux 64-bit

Simulink and HDL
simulator cosimulation

Simulink, Fixed-Point
Designer

Signal Processing
Toolbox, DSP System
Toolbox

Windows 32- and 64-bit;
Linux 64-bit

2 About HDL Verifier

2-6

FPGA Verification
In this section...
“FPGA Verification with HDL Verifier and HDL Coder” on page 2-7
“Product Features and Platform Support” on page 2-7

FPGA Verification with HDL Verifier and HDL Coder
HDL Verifier works with Simulink or MATLAB and HDL Coder™ and the supported FPGA
development environment to prepare your automatically generated HDL code for implementation in
an FPGA. FPGA-in-the-Loop (FIL) simulation allows you to run a Simulink or MATLAB simulation with
an FPGA board strictly synchronized with this software. This process lets you get real world data into
your design while accelerating your simulation with the speed of an FPGA.

You can generate a FIL programming file in one of the following ways:

• With the HDL Verifier FIL Wizard.
• With the HDL Coder Workflow Advisor.

The FIL Wizard uses any synthesizable HDL code including code automatically generated from
Simulink models by HDL Coder software. When you use FIL in the Workflow Advisor, HDL Coder uses
the loaded design to create the HDL code. Either way, this HDL code is then augmented by
customized code for FIL communication with your design and assembled into an FPGA project. The
applicable downstream tools are used to process that project to create a programming file that is
automatically downloaded to the FPGA device on a development board for verification.

HDL Verifier supports the use of a FIL block in a referenced model and a System object in
conjunction with a MATLAB program.

Product Features and Platform Support
Product Feature Required Products Recommended

Products
Supported Platforms

FPGA-in-the-Loop For FIL simulation with
MATLAB: MATLAB,
Fixed-Point Designer
For FIL simulation with
Simulink:
Simulink, Fixed-Point
Designer

HDL Coder Windows 64-bit; Linux
64-bit

Preregistered FPGA Devices for FIL Simulation

HDL Verifier supports FIL simulation on the devices as described in “Supported FPGA Devices for
FPGA Verification” on page 3-6. The FPGA board support packages contain the definition files for
all supported boards. You may download one or more vendor-specific packages, but you must
download one of the packages before you can use FIL or customize your own board definition file
using the New FPGA Board Wizard (see “Create Custom FPGA Board Definition”).

To see the list of HDL Verifier support packages, visit HDL Verifier Supported Hardware. To download
an FPGA board support package:

 FPGA Verification

2-7

• On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages.

2 About HDL Verifier

2-8

TLM Component Generation
In this section...
“Generating TLM Components for Virtual Platform Development” on page 2-9
“Typical Users and Applications” on page 2-10
“Product Feature and Platform Support” on page 2-10

Generating TLM Components for Virtual Platform Development
HDL Verifier lets you create a SystemC Transaction Level Model (TLM) that can be executed in any
OSCI-compatible TLM 2.0 environment, including a commercial virtual platform.

When used with virtual platforms, HDL Verifier joins two different modeling environments: Simulink
for high-level algorithm development and virtual platforms for system architectural modeling. The
Simulink modeling typically dispenses with implementation details of the hardware system such as
processor and operating system, system initialization, memory subsystems, device configuration and
control, and the particular hardware protocols for transferring data both internally and externally.

The virtual platform is a simulation environment that is concerned about the hardware details: it has
components that map to hardware devices such as processors, memories, and peripherals, and a
means to model the hardware interconnect between them.

Although many goals could be met with a virtual platform model, the ideal scenario for virtual
platforms is to allow for software development—both high level application software and low-level
device driver software—by having fairly abstract models for the hardware interconnect that allow the
virtual platform to run at near real-time speeds, as demonstrated in the following diagram.

The functional model provides a sort of halfway point between the speed you can achieve with
abstraction and the accuracy you get with implementation.

 TLM Component Generation

2-9

Typical Users and Applications
Using HDL Verifier and Simulink, you can create a TLM-compliant SystemC Transaction Level Model
(TLM) that can be executed in any OSCI-compatible TLM environment, including a commercial virtual
platform.

Typical users and applications include:

• System-level engineers designing electronic system models that include architectural
characteristics

• Software developers who want to incorporate an algorithm into a virtual platform without using
an instruction set simulator (ISS).

• Hardware functional verification engineers. In this case, the algorithm represents a piece of
hardware going into a chip.

Product Feature and Platform Support
Product Feature Required Products Recommended

Products
Supported Platforms

TLM Generator Simulink Coder™ Embedded Coder®

(Simulink Coder is also
required)

Windows 32-bit and 64-
bit; Linux 64-bit

2 About HDL Verifier

2-10

SystemVerilog DPI Component Generation
In this section...
“Export Simulink Subsystem or MATLAB Function Using DPI Interface” on page 2-11
“Generate SystemVerilog DPI Test Bench in HDL Coder” on page 2-11

Export Simulink Subsystem or MATLAB Function Using DPI Interface
You can export a Simulink subsystem or MATLAB function with a DPI interface for Verilog or
SystemVerilog simulation. The coder wraps generated C code with a DPI wrapper accessed through a
SystemVerilog thin interface function.

• Simulink subsystem — Access this feature by clicking the HDL Verifier app, and then in the HDL
Verifier tab click Generate DPI Component. See “Generate SystemVerilog DPI Component”.

• MATLAB function — Generate the component using the dpigen function. See “Generate DPI
Component Using MATLAB”.

HDL Verifier supports SystemVerilog DPI component generation with these products and platforms.

Design Format Required Products Recommended
Products

Supported Platforms

Simulink subsystem Simulink and Simulink
Coder

Embedded Coder • Windows 32-bit and
64-bit

• Linux 64-bit
MATLAB function MATLAB and MATLAB

Coder
 • Windows 64-bit

• Linux 64-bit

Generate SystemVerilog DPI Test Bench in HDL Coder
If you have an HDL Coder license, you can generate a SystemVerilog DPI test bench. Use the test
bench to verify your generated HDL code using C code generated from your entire Simulink model,
including the DUT and data sources. To use this feature, your entire model must support C code
generation with Simulink Coder. You can access this feature in HDL Workflow Advisor under HDL
Code Generation > Set Testbench Options, or in the Model Configuration Parameters dialog box,
under HDL Code Generation>Test Bench. Alternatively, for command-line access, set the
GenerateSVDPITestBench property of makehdltb. For an example of SystemVerilog Testbench
generation using HDL Coder, see “Verify HDL Design Using SystemVerilog DPI Test Bench” (HDL
Coder).

HDL Verifier supports SystemVerilog DPI test bench generation in HDL Coder with these products
and platforms.

Design Format Required Products Recommended
Products

Supported Platforms

Simulink subsystem Simulink and Simulink
Coder

Embedded Coder • Windows 32-bit and
64-bit

• Linux 64-bit

 SystemVerilog DPI Component Generation

2-11

See Also

More About
• “DPI Component Generation with Simulink”
• “Considerations for DPI Component Generation with MATLAB”

2 About HDL Verifier

2-12

Third-Party Product Requirements

3

Supported EDA Tools and Hardware

In this section...
“Cosimulation Requirements” on page 3-2
“FPGA Verification Requirements” on page 3-3
“UVM and DPI Component Generation Requirements” on page 3-12
“TLM Generation Requirements” on page 3-13
“Troubleshooting” on page 3-13

Cosimulation Requirements
• “Cadence Xcelium Requirements” on page 3-2
• “Mentor Graphics Questa and ModelSim Usage Requirements” on page 3-2
• “Vivado Simulator Requirements” on page 3-3

To get started, see “Set Up MATLAB-HDL Simulator Connection” or “Start HDL Simulator for
Cosimulation in Simulink”.

Cadence Xcelium Requirements

MATLAB and Simulink support Cadence verification tools using HDL Verifier. Only the 64-bit version
of Xcelium is supported for cosimulation. Use this recommended version, which has been fully tested
against the current release:

• Xcelium 2021.09

The HDL Verifier shared libraries (liblfihdls*.so, liblfihdlc*.so) are built using the gcc
included in the Cadence Xcelium simulator platform distribution. If you are building your own
application, choose the version of the library that matches the version of gcc that you are using. See
the HDL simulator documentation for more details about how to build and link your own applications.

Mentor Graphics Questa and ModelSim Usage Requirements

MATLAB and Simulink support Mentor Graphics® verification tools using HDL Verifier. Use the
following recommended versions. Each version has been fully tested against the current release:

• Questa Core/Prime 2022.2
• ModelSim PE 2022.2

Note HDL Verifier does not support these versions of ModelSim:

• ModelSim ME
• ModelSim-Intel FPGA Edition
• ModelSim-Intel Starter Edition
• QuestaSim-Intel FPGA Edition
• QuestaSim-Intel Starter Edition

3 Third-Party Product Requirements

3-2

Vivado Simulator Requirements

MATLAB and Simulink support Xilinx Vivado verification tool using HDL Verifier. Use this
recommended version, which has been fully tested against the current release:

• Xilinx Vivado 2022.1

FPGA Verification Requirements

• “Xilinx Usage Requirements” on page 3-3
• “Intel Quartus Usage Requirements” on page 3-3
• “Microchip Usage Requirements” on page 3-3
• “FPGA Board Connections” on page 3-4
• “Supported FPGA Devices for FPGA Verification” on page 3-6
• “Supported FPGA Device Families for Board Customization” on page 3-11

Xilinx Usage Requirements

MATLAB and Simulink support Xilinx design tools using HDL Verifier. Use the FPGA-in-the-loop (FIL)
tools with these recommended versions:

• Xilinx Vivado 2022.1.
• Xilinx ISE 14.7

Note Xilinx ISE is required for FPGA boards in the Spartan®-6, Virtex®-4, Virtex-5, and Virtex-6
families.

For tool setup instructions, see “Set Up FPGA Design Software Tools”.

Intel Quartus Usage Requirements

MATLAB and Simulink support Intel design tools using HDL Verifier. Use the FIL tools with these
recommended versions:

• Intel Quartus® Prime Standard 21.1
• Intel Quartus Prime Pro 21.3 (supported for Intel Arria® 10 and Cyclone® 10 GX only)
• Intel Quartus II 13.1 (supported for Intel Cyclone III boards only)

For tool setup instructions, see “Set Up FPGA Design Software Tools”.

Microchip Usage Requirements

MATLAB and Simulink support Microchip design tools using HDL Verifier. Use the FIL tools with
these recommended versions:

• Microchip Libero® SoC v12.6 (supports SmartFusion® 2 and RTG4® boards)
• Microchip Libero SoC v12.0 (supports Polarfire® boards)

These features require a gold or platinum license from Microchip. For tool setup instructions, see
“Set Up FPGA Design Software Tools”.

 Supported EDA Tools and Hardware

3-3

FPGA Board Connections

Additional boards can be custom added with the “FPGA Board Manager”. See “Supported FPGA
Device Families for Board Customization” on page 3-11.

JTAG Connection

You can run FPGA-in-the-loop, FPGA data capture, or AXI manager over a JTAG cable to your board.
However, each feature requires exclusive use of the JTAG cable, so you cannot run more than one
feature at the same time. To allow other tools access to the JTAG cable, such as programming the
FPGA, and Xilinx ChipScope, you must discontinue the JTAG connection in MATLAB. To release the
JTAG cable:

• FPGA-in-the-loop — Close the Simulink model, or call the release method of the System object.
• FPGA data capture — Close the FPGA Data Capture tool, release the System object, or close the

Simulink model.
• AXI manager — Call the release method of the object.

However, the nonblocking capture mode enables you to simultaneously use FPGA data capture and
AXI manager, which share a common JTAG interface. For more information, see the "Simultaneous
Use of FPGA Data Capture and AXI Manager" section of “JTAG Considerations”.

Vendor Required Hardware Required Software
Intel USB Blaster I or USB

Blaster II download cable
• USB Blaster I or II driver
• For Windows operating systems: Quartus Prime

executable directory must be on system path.
• For Linux operating systems: versions below Quartus II

13.1 are not supported. Quartus II 14.1 is not
supported. Only 64-bit Quartus is supported. Quartus
library directory must be on LD_LIBRARY_PATH before
starting MATLAB. Prepend the Linux distribution
library path before the Quartus library on
LD_LIBRARY_PATH. For example, /lib/x86_64-
linux-gnu:$QUARTUS_PATH.

Xilinx Digilent® download cable

• If your board has an
onboard Digilent USB-
JTAG module, use a
USB cable

• If your board has a
standard Xilinx 14 pin
JTAG connector, use
with HS2 or HS3 cable
from Digilent

• For Windows operating systems: Xilinx Vivado
executable directory must be on system path.

• For Linux operating systems: Digilent Adept 2. For the
installation steps, see “Install Digilent Adept 2
Runtime”.

3 Third-Party Product Requirements

3-4

Vendor Required Hardware Required Software
FTDI USB-JTAG cable

• Supported for boards
with onboard FT4232H,
FT232H, or FT2232H
devices implementing
USB-to JTAG

Install these D2XX drivers.

• For Windows operating systems: 2.12.28 (64 bit)
• For Linux operating systems: 1.4.22 (64 bit)

For the installation guide, see D2XX Drivers from the FTDI
Chip website.

Microchip JTAG connection not supported

Note

• The Xilinx Platform Cable USB II is not supported for FPGA verification.
• When simulating your FPGA design through Digilent JTAG cable with Simulink or MATLAB, you

cannot use any debugging software that requires access to JTAG, such as Vivado Logic Analyzer.

Ethernet Connection

You can run FPGA-in-the-loop, FPGA data capture, or AXI manager over an Ethernet connection. To
use FPGA data capture and AXI manager over an Ethernet connection in a single HDL project,
connect the FPGA data capture and AXI manager IPs to the same Ethernet MAC Hub IP using
different port addresses.

On Zynq® SoC devices you can access the Ethernet interface only through the processing system
(PS). To implement Ethernet communication between the host and the hardware board, operation
system (OS) and related software applications must run on the PS. Use the hardware setup app to
guide you in setting up the SD card and boot the board with a compatible OS.

Required Hardware Supported Interfacesa Required Software
• Gigabit Ethernet card
• Cross-over Ethernet cable
• FPGA board with supported

Ethernet connection
• SD card (for Zynq SoC

devices)

• Gigabit Ethernet — GMII
• Gigabit Ethernet — RGMII
• Gigabit Ethernet — SGMII
• Ethernet — MII
• Ethernet — RMII

There are no software
requirements for an Ethernet
connection, but ensure that the
firewall on the host computer
does not prevent UDP
communication.

a The HDL Verifier Support Package for Microchip FPGA Boards supports only SGMII interfaces.

Note

• FPGA data capture and AXI manager support GMII, MII, and SGMII interfaces only.
• RMII is supported with Vivado versions older than 2019.2.
• Ethernet connection to Virtex-7 VC707 not supported for Vivado versions older than 2013.4.
• AXI manager and FPGA data capture in HDL Workflow Advisor support programmable logic (PL)

Ethernet only. PS Ethernet is not supported.
• FPGA data capture in HDL Workflow Advisor does not support SGMII interface.

 Supported EDA Tools and Hardware

3-5

https://ftdichip.com/drivers/d2xx-drivers/

Supported FPGA Devices for FPGA Verification

HDL Verifier supports FIL simulation, FPGA data capture, and AXI manager on the devices shown in
the following table. The board definition files for these boards are in the “Download FPGA Board
Support Package”. You can add other FPGA boards for use with FIL, FPGA data capture, and AXI
manager with FPGA board customization (“FPGA Board Customization”).

Device
Family

Board Ethernet JTAG PCI Express Comments
FIL FPG

A
Dat
a
Capt
ure

AXI
Man
ager

FIL FPG
A
Dat
a
Capt
ure

AXI
Man
ager

FILa FPG
A
Dat
a
Capt
ure

AXI
Man
ager

Xilinx
Artix®-7

Digilent
Nexys™ 4
Artix-7

x x x x

Digilent Arty
Board

x x x x x x

Xilinx
Kintex®

-7

Kintex-7 KC705 x x x x x x x x

Xilinx
Kintex
UltraSc
ale™

Kintex
UltraScale
FPGA KCU105
Evaluation Kit

x x x x x x x

Xilinx
Kintex
UltraSc
ale+™

Kintex
UltraScale+
FPGA KCU116
Evaluation Kit

 x x x x x For more
information, see “PCI
Express AXI
Manager”.

Xilinx
Spartan
-6

Spartan-6
SP605

x

Spartan-6
SP601

x

XUP Atlys
Spartan-6

x

Xilinx
Spartan
-7

Digilent Arty
S7-25

 x x x

Xilinx
Virtex
UltraSc
ale

Virtex
UltraScale
FPGA VCU108
Evaluation Kit

x x x x x x x

Xilinx
Virtex
UltraSc
ale+

Virtex
UltraScale+
FPGA VCU118
Evaluation Kit

 x x x x x x x

3 Third-Party Product Requirements

3-6

Device
Family

Board Ethernet JTAG PCI Express Comments
FIL FPG

A
Dat
a
Capt
ure

AXI
Man
ager

FIL FPG
A
Dat
a
Capt
ure

AXI
Man
ager

FILa FPG
A
Dat
a
Capt
ure

AXI
Man
ager

Xilinx
Virtex-7

Virtex-7 VC707 x x x x x x x x
Virtex-7 VC709 x x x x x

Xilinx
Virtex-6

Virtex-6 ML605 x

Xilinx
Virtex-5

Virtex ML505 x
Virtex ML506 x
Virtex ML507 x
Virtex XUPV5–
LX110T

x

Xilinx
Virtex-4

Virtex ML401 x Note Support for
Virtex-4 device
family will be
removed in a future
release.

Virtex ML402 x
Virtex ML403 x

Xilinx
Zynq

Zynq-7000
ZC702

x x x x x This board supports
PS Ethernet.

Zynq-7000
ZC706

x x x x x This board supports
PS Ethernet.

ZedBoard™ x x x x x Use the USB port
marked "PROG" for
programming.

This board supports
PS Ethernet.

ZYBO™
Zynq-7000
Development
Board

 x x x

PicoZed™ SDR
Development
Kit

 x x x

MiniZed™ x x
Xilinx
Zynq
UltraSc
ale+

Zynq UltraScale
+ MPSoC
ZCU102
Evaluation Kit

x x x x x This board supports
PS Ethernet.

 Supported EDA Tools and Hardware

3-7

Device
Family

Board Ethernet JTAG PCI Express Comments
FIL FPG

A
Dat
a
Capt
ure

AXI
Man
ager

FIL FPG
A
Dat
a
Capt
ure

AXI
Man
ager

FILa FPG
A
Dat
a
Capt
ure

AXI
Man
ager

Zynq UltraScale
+ MPSoC
ZCU104
Evaluation Kit

 x x x

Zynq UltraScale
+ MPSoC
ZCU106
Evaluation Kit

 x x x

Zynq UltraScale
+ RFSoC
ZCU111
Evaluation Kit

x x x x x This board supports
PS Ethernet.

Zynq UltraScale
+ RFSoC
ZCU216
Evaluation Kit

x x x x x This board supports
PS Ethernet.

Xilinx
Versal®

Versal AI Core
Series VCK190
Evaluation Kit

x x x x

Intel
Arria II

Arria II GX
FPGA
Development
Kit

x x x x x x

Intel
Arria V

Arria V SoC
Development
Kit

 x x x x

Arria V Starter
Kit

x x x x x x

Intel
Arria
10

Arria 10 SoC
Development
Kit

x x x x x For Ethernet
connection, use
Quartus Prime 16.1
or newer.

3 Third-Party Product Requirements

3-8

Device
Family

Board Ethernet JTAG PCI Express Comments
FIL FPG

A
Dat
a
Capt
ure

AXI
Man
ager

FIL FPG
A
Dat
a
Capt
ure

AXI
Man
ager

FILa FPG
A
Dat
a
Capt
ure

AXI
Man
ager

Arria 10 GX x x x x x x x For Ethernet
connection, use
Quartus Prime 16.1
or newer.

Quartus Prime 18.0
is not recommended
for Arria 10 GX over
PCI Express.

Intel
Cyclone
IV

Cyclone IV GX
FPGA
Development
Kit

x x x x x x

DE2-115
Development
and Education
Board

x x x x x The Altera® DE2-115
FPGA development
board has two
Ethernet ports. FIL
uses only Ethernet 0
port. Make sure that
you connect your
host computer with
the Ethernet 0 port
on the board via an
Ethernet cable.

BeMicro SDK x x x x x
Intel
Cyclone
III

Cyclone III
FPGA Starter
Kit

 x x x x Altera Cyclone III
boards are supported
with Quartus II 13.1

Note Support for
Cyclone III device
family will be
removed in a future
release.

Cyclone III
FPGA
Development
Kit

x x x x x

Altera Nios II
Embedded
Evaluation Kit,
Cyclone III
Edition

x x x x x

Intel
Cyclone
V

Cyclone V GX
FPGA
Development
Kit

x x x x x x

 Supported EDA Tools and Hardware

3-9

Device
Family

Board Ethernet JTAG PCI Express Comments
FIL FPG

A
Dat
a
Capt
ure

AXI
Man
ager

FIL FPG
A
Dat
a
Capt
ure

AXI
Man
ager

FILa FPG
A
Dat
a
Capt
ure

AXI
Man
ager

Cyclone V SoC
Development
Kit

 x x x x

Cyclone V GT
FPGA
Development
Kit

x x x x x x x

Terasic Atlas-
SoC Kit / DE0-
Nano SoC Kit

 x x x x

Arrow® SoCKit
Development
Kit

 x x x x

Intel
Cyclone
10 LP

Altera Cyclone
10 LP
Evaluation Kit

 x x x x

Intel
Cyclone
10 GX

Altera Cyclone
10 GX FPGA
Development
Kit

 x x x x x Must be used with
Quartus Prime Pro.

Intel
MAX®

10

Arrow MAX 10
DECA

x x x x x

Intel
Stratix®

IV

Stratix IV GX
FPGA
Development
Kit

x x x x x x

Intel
Stratix
V

DSP
Development
Kit, Stratix V
Edition

x x x x x x x

Microc
hip
SmartF
usion 2

Microchip
SmartFusion 2
SoC FPGA
Advanced
Development
Kit

x See “Installing
Microchip
SmartFusion 2 SoC
FPGA Advanced
Development Kit”.

3 Third-Party Product Requirements

3-10

Device
Family

Board Ethernet JTAG PCI Express Comments
FIL FPG

A
Dat
a
Capt
ure

AXI
Man
ager

FIL FPG
A
Dat
a
Capt
ure

AXI
Man
ager

FILa FPG
A
Dat
a
Capt
ure

AXI
Man
ager

Microc
hip
Polarfir
e

Microchip
Polarfire
Evaluation Kit

x See “Installing
Microchip Polarfire
Evaluation Kit”. Use
with Libero SoC
v12.0.

Microc
hip
RTG4

RTG4-DEV-KIT x

a FIL over PCI Express® connection is supported only for 64-bit Windows operating systems.

Limitations

• For FPGA development boards that have more than one FPGA device, only one such device can be
used with FIL.

FPGA Board Support Packages

The FPGA board support packages contain the definition files for all supported boards. You can
download one or more vendor-specific packages. To use FIL, download at least one of these packages,
or customize your own board definition file. See “Create Custom FPGA Board Definition”.

To see the list of HDL Verifier support packages, visit HDL Verifier Supported Hardware. To download
an FPGA board support package:

• On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages.

Supported FPGA Device Families for Board Customization

HDL Verifier supports the following FPGA device families for board customization; that is, when you
create your own board definition file. See “FPGA Board Customization”. PCI Express is not a
supported connection for board customization.

Note The HDL Verifier Support Package for Microchip FPGA Boards does not support board
customization.

Device Family Restrictions
Xilinx Artix 7

Kintex 7
Kintex UltraScale
Kintex UltraScale+
Spartan 6 Ethernet PHY RGMII is not supported.

 Supported EDA Tools and Hardware

3-11

Device Family Restrictions
Spartan 7
Virtex 4 Note Support for Virtex-4 device

family will be removed in a future
release.

Virtex 5
Virtex 6
Virtex 7 Supports Ethernet PHY SGMII only.
Virtex UltraScale
Virtex UltraScale+
Zynq 7000
Zynq UltraScale+

Intel Arria II
Arria V
Arria 10
Cyclone III Note Support for Cyclone III device

family will be removed in a future
release.

Cyclone IV
Cyclone V
Cyclone 10 LP
Cyclone 10 GX
MAX 10
Stratix IV
Stratix V

UVM and DPI Component Generation Requirements
UVM and DPI component generation supports the same versions of Cadence Xcelium and Mentor
Graphics Questa and ModelSim as for cosimulation. You can generate a DPI component for use with
either 64-bit or 32-bit Xcelium.

In addition, UVM and DPI Component generation also supports:

• Synopsys VCS® MX vS-2021.09-1

Note When you run a DPI component in ModelSim 10.5b on Debian® 8.3, you may encounter a
library incompatibility error:

** Warning: ** Warning: (vsim-7032) The 64-bit glibc RPM
does not appear to be installed on this machine. Calls to gcc may fail.
** Fatal: ** Error: (vsim-3827) Could not compile 'STUB_SYMS_OF_fooour.so':

To avoid this issue, on the Code Generation pane in Configuration Parameters, try these options:

3 Third-Party Product Requirements

3-12

• Set the Build configuration to Faster Runs.
• Or, set the Build configuration to Specify and specify the compiler flag -O3.

UVM generation also requires a UVM Reference Implementation, available for download from the
UVM standard website. This feature is tested with the default shipped version for each supported
simulator.

TLM Generation Requirements
With the current release, TLMG includes support for:

• Compilers:

• Visual Studio®: VS2008, VS2010, VS2012, VS2013, VS2015, and VS2017
• Windows 7.1 SDK
• gcc 6.3

• SystemC:

• SystemC 2.3.1 (TLM included)

You can download SystemC and TLM libraries at https://accellera.org. Consult the Accellera
Systems Initiative website for information about how to build these libraries after downloading.

• System C Modeling Library (SCML):

• SCML 2.4.3

You can download SCML from https://www.synopsys.com.

Troubleshooting
Path exceeds Windows limit. When executing the HDL Verifier product examples on a Windows
machine there can be errors caused by a Windows path limit of 260 characters. Sometimes the
condition can be caught and you may receive an error such as the following:

Build failed because the build file name(s) exceed the Windows limit of 260
characters. Build from a working directory with a shorter path, to allow
build files to be created with shorter filenames.

Often, however, the long path is created during the execution of third party tools such as Vivado or
Quartus and the resulting error from those tools will seem to be unrelated. Some examples for such
errors are:

• ERROR: [Common 17-680] Path length exceeds 260-Byte maximum allowed by Windows:
c:\Users\user\OneDrive - MathWorks\Documents\MATLAB\Examples\R2022a\xilinxfpgaboards\
ZynqEthernet\ethernetaximanagerzynq.srcs\sources_1\bd\design_1\ip\design_1_mig_7series_0_0\
_tmp\/design_1_mig_7series_0_0/example_design/rtl/traffic_gen/mig_7series_v4_2_axi4_tg.v
Please consider using the OS subst command to shorten the path length by mapping part
of the path to a virtual drive letter. See Answer Record AR52787 for
more information.
Resolution: In Windows 7 or later, the mklink command can also be used to create a
symbolic link and shorten the path.

• WARNING: [Vivado 12-8222] Failed run(s) : 'clk_wiz_0_synth_1', 'simcycle_fifo_synth_1'
wait_on_run: Time (s): cpu = 00:00:00 ; elapsed = 00:02:16 .
Memory (MB): peak = 1636.988 ; gain = 0.000

 Supported EDA Tools and Hardware

3-13

https://www.accellera.org/downloads/standards/uvm
https://accellera.org
https://www.synopsys.com
https://www.xilinx.com/support/answers/52787.html

if {[get_property PROGRESS [get_runs synth_1]] != "100%"} {
error "ERROR: Synthesis failed"

• Error (12006): Node instance "ident" instantiates undefined entity
"alt_sld_fab_altera_connection_identification_hub_171_gdd6b5i"
Ensure that required library paths are specified correctly,
define the specified entity, or change the instantiation.
If this entity represents Intel FPGA or third-party IP,
generate the synthesis files for the IP.

A long path may be suspected when the root folder for running the example is already fairly long,
such as over 100 characters.

In both the detected and undetected long path scenarios, to avoid the errors, use one of these
methods:

• Map the example directory to a shorter letter drive alias. For example, the following will eliminate
122 characters from the path, allowing much more headroom for the 260 character limit.

cmd> subst W: “C:\Users\janedoe\OneDrive - Personal\Documents\MATLAB
\Examples\R2021b\hdlverifier\GettingStartedWithSimulinkHDLCosimExample”

• After opening an example, copy the example directory to a directory with a short name (such as /
tmp).

Unrecognized Function. When you have more than one version of a third party tool, but only one
version is licensed (or when only one version is supported by HDL Verifier), MATLAB might error out
with "Unrecognized function" when calling that tool.

To make sure MATLAB opens the licensed version of your simulator you must:

• Set the correct license variable with the path to the licence file.
• Make sure that the Path variable points to your licensed executable version.

3 Third-Party Product Requirements

3-14

	Introduction
	HDL Verifier Product Description

	About HDL Verifier
	HDL Cosimulation
	HDL Cosimulation with MATLAB or Simulink
	Communications for HDL Cosimulation
	Hardware Description Language (HDL) Support
	HDL Cosimulation Workflows
	Product Features and Platform Support

	FPGA Verification
	FPGA Verification with HDL Verifier and HDL Coder
	Product Features and Platform Support

	TLM Component Generation
	Generating TLM Components for Virtual Platform Development
	Typical Users and Applications
	Product Feature and Platform Support

	SystemVerilog DPI Component Generation
	Export Simulink Subsystem or MATLAB Function Using DPI Interface
	Generate SystemVerilog DPI Test Bench in HDL Coder

	Third-Party Product Requirements
	Supported EDA Tools and Hardware
	Cosimulation Requirements
	FPGA Verification Requirements
	UVM and DPI Component Generation Requirements
	TLM Generation Requirements
	Troubleshooting

